报告名称:Converting modular flows to integer flows in signed graphs
报告专家:李佳傲
专家所在单位:南开大学
报告时间:2023年11月30日
报告地点: 英国威廉希尔体育公司201
专家简介:李佳傲,南开大学数学科学学院,教授,博士生导师。本科和硕士毕业于中国科学技术大学,博士毕业于美国西弗吉尼亚大学(导师为赖虹建教授)。2022年12月至今任南开大学数学科学学院教授。主要研究兴趣是离散数学与组合图论。包括图的染色,Tutte整数流理论,图结构与分解,加性组合,网络与组合优化等问题。已完成和发表论文三十余篇,研究成果发表在J. Combin. Theory Ser. B, SIAM J. Discrete Math, J. Graph Theory 等杂志。担任天津市数学会秘书长,中国运筹学会图论组合分会理事,以及SCI杂志Journal of Combinatorial Optimization的副编辑(Associate Editor)等学术兼职。入选天津市“131”创新型人才培养工程第三层次(2019),天津市青年人才托举工程(2020),南开大学百名青年学科带头人培养计划(2021)。2022年获国家自然科学基金优秀青年科学基金项目资助。
报告摘要:The concept of flows on signed graphs naturally comes from the dual of local tensions of graphs embedded on non-orientable surfaces. It was conjectured by Bouchet in 1983 that every flow-admissible signed graph admits a nowhere-zero integer 6-flow. The recent 11-flow theorem of signed graphs, obtained by us in JCTB2021, is established by proving the existence of a balanced $Z_2\times Z_3$-flow, and then converting $Z_2$-, $Z_3$-flows to integer 3-, 5-flows, respectively. It is crucial to study on how to convert $Z_k$-flows to better integer flows. In this talk, we will show that every bridgeless signed graph with a nowhere-zero $Z_5$-flow admits a nowhere-zero integer 7-flow. The key steps in the proof are some reduction techniques introduced in our recent work (SIAMDM 2021) and some tools from graph factors.