欢迎来到:英国威廉希尔体育公司!

教授
彭志刚

1541?e=.jpg

姓 名:彭志刚

出生年月:1965年6月

学 位:博士

职 称:教授

研究方向:复分析

联系方式:pengzhigang@hubu.edu.cn

代表作:

1.M. Obradovic, Z. Peng, Some Results for a Class of Subordinate Functions, Filomat, 2019, 33(14) , 4687–4695 (SCI 3区)

2.Zhigang Peng,Milutin Obradovic,New results for a class of univalent functions,Acta Mathematica Scientia, 2019, 39B(6), 1579–1588 (SCI 2区)

3.Zhigang Peng, Milutin Obradovic, The estimate of the difference of initial successive coefficients of univalent functions, Journal of Mathematical Inequalities, 2019, 13(2), 301–314 (SCI 3区)

4.M. Obradovic, Z. Peng, Some New Results for Certain Classes of Univalent Functions, Bull. Malays. Math. Sci. Soc. , 2018, 41, 1623–1628 (SCI 3区)

5.彭志刚,潘文君,熊松林,与超几何函数相关的几类解析函数族的性质,数学物理学报, 2018, 38A(2), 215-221

6.Zhigang Peng, Guangzhen Zhong, Some properties for certain classes of univalent functions defined by differential inequalities, Acta Mathematica Scientia 2017,37B(1):69–78

7.Z. Peng, G. Murugusundaramoorthy, and T. Janani, Coefficient Estimate of Biunivalent Functions of Complex Order Associated with the Hohlov Operator, Journal of Complex Analysis, Volume 2014, Article ID 693908, 6 pageshttp://dx.doi.org/10.1155/2014/693908

8.Z. Peng, On the Fekete-Szego problem for a class of analytic functions,ISRN Mathematical Analysis,Vol.2014, ArticleID 861671, 4 pages, http://dx.doi.org/10.1155/2014/861671

9.Z. Peng, Q. Han, On the coefficients of several classes of bi-univalent functions,Acta Mathematica Scientia,2014,34(B),228-240 (SCI)

10.Z. Peng, The extreme and support points of a new class of analytic functions with positive real part,Journal of Complex Analysis, vol. 2013, Article ID 407529, 2013. doi:10.1155/2013/407529

11.Z. Peng, The extreme points of a class of analytic functions with positive real part and a prescribed set of values,Acta Mathematica Scientia,2012,32B(5),1929-1936 (SCI)

12.Z. Peng, On a subclass of close to convex functions,Acta Mathematica Scientia 2010,30B(5),1449-1456 (SCI)

13.Z. Peng, Some extremal problems on subordinate functions, Applied Mathematics Letters, 2009(22), 1670-1673 (SCI)

14.Z. Peng, The support points of several classes of analytic functions with fixed coefficients,J. Math. Anal. Appl.,2008(340),209–218 (SCI)

15.彭志刚,一类算子值解析函数族的极值点,数学物理学报,2008,28A(5),945-957

16.彭志刚,具有缺项系数的几类解析函数族的性质,数学物理学报,2008,28A(4),661-669

17.苏峰,彭志刚,Henstock-Kurzweil可积函数的Laplace变换的反演定理,数学物理学报,2007,27A(6),1155-1163

18.彭志刚,星形函数族的一个子族的极值点与支撑点,数学物理学报,2006,26A(6),858-862

19.彭志刚,苏峰,一类解析函数族的极值点与支撑点,数学物理学报,2005,25A(3),345-348

20.Z. Peng, L. Liu, Extreme points and support points of a class of analytic functions, Acta Mathematica Scientia, 2000(20), 131-136 (SCI)

21.Z. Peng, The extreme points of several classes of analytic functions, Acta Mathematica Scientia, 1999(19), 457-462 (SCI)

22.Z. Peng, The support points and extreme points of the unit ball of Hp’, Acta Mathematica Scientia, 1999(19), 181-189 (SCI)

23.Z. Peng, A sufficient condition fork′(z)(k(z)∈Hq,q≥1) to be of H1.Wuhan University Journal of Natural Science, 1997( 2), 139—41

24.彭志刚,杨爱芳,星形函数族的一个子族的极值点与支撑点,数学杂志,1998(18), 450-454

25.彭志刚,Dirichlet级数构成的拓扑线性空间和H^p空间.数学杂志,1997(18), 96-102,

26.彭志刚,一类解析函数族的极值点与支撑点,纯粹数学与应用数学,1998(14), 5-8.

27.彭志刚,关于Hp′空间单位球的支撑点.威廉希尔官方网站学报,2001(23),194-196

28.彭志刚,关于Hadamard矩阵,《湖北工学院学报》, 1993(4),80-83

主要科研项目:

1.省教育厅自然科学基金项目《解析函数空间及其线性极值问题》(2004-2007)




版权所有 英国威廉希尔体育公司-威廉希尔官方网站

地址:湖北省武汉市武昌区友谊大道368号 邮政编码:430062

Email:stxy@hubu.edu.cn 电话:027-88662127